Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Article in English | MEDLINE | ID: mdl-33685892

ABSTRACT

Cyp51 contribution to azole resistance has been broadly studied and characterized in Aspergillus fumigatus, whereas it remains poorly investigated in other clinically relevant species of the genus, such as those of section Nigri In this work, we aimed to analyze the impact of cyp51 genes (cyp51A and cyp51B) on the voriconazole (VRC) response and resistance of Aspergillus niger and Aspergillus tubingensis We generated CRISPR-Cas9 cyp51A and cyp51B knock-out mutants from strains with different genetic backgrounds and diverse patterns of azole susceptibility. Single gene deletions of cyp51 genes resulted in 2 to 16-fold decrease of the VRC Minimum Inhibitory Concentration (MIC) values, which were below the VRC Epidemiological Cutoff Value (ECV) established by the Clinical and Laboratory Standards Institute (CLSI) irrespective of their parental strains susceptibilities. Gene expression studies in the tested species confirmed that cyp51A participates more actively than cyp51B in the transcriptional response of azole stress. However, ergosterol quantification revealed that both enzymes comparably impact the total ergosterol content within the cell, as basal and VRC-induced changes to ergosterol content was similar in all cases. These data contribute to our understanding on Aspergillus azole resistance, especially in non-fumigatus species.

2.
Front Cell Infect Microbiol ; 12: 906563, 2022.
Article in English | MEDLINE | ID: mdl-35651755

ABSTRACT

Background: Ibrexafungerp (SCY-078) is the newest oral and intravenous antifungal drug with broad activity, currently undergoing clinical trials for invasive candidiasis. Objective: The aim of this study was to assess the in vitro activity of ibrexafungerp and comparators against a collection of 434 European blood isolates of Candida. Methods: Ibrexafungerp, caspofungin, fluconazole, and micafungin minimum inhibitory concentrations (MICs) were collected from 12 European laboratories for 434 blood isolates, including 163 Candida albicans, 108 Candida parapsilosis, 60 Candida glabrata, 40 Candida tropicalis, 29 Candida krusei, 20 Candida orthopsilosis, 6 Candida guilliermondii, 2 Candida famata, 2 Candida lusitaniae, and 1 isolate each of Candida bracarensis, Candida catenulata, Candida dubliniensis, and Candida kefyr. MICs were determined by the EUCAST broth microdilution method, and isolates were classified according to recommended clinical breakpoints and epidemiological cutoffs. Additionally, 22 Candida auris from different clinical specimens were evaluated. Results: Ibrexafungerp MICs ranged from 0.016 to ≥8 mg/L. The lowest ibrexafungerp MICs were observed for C. albicans (geometric MIC 0.062 mg/L, MIC range 0.016-0.5 mg/L) and the highest ibrexafungerp MICs were observed for C. tropicalis (geometric MIC 0.517 mg/L, MIC range 0.06-≥8 mg/L). Modal MICs/MIC50s (mg/L) against Candida spp. were 0.125/0.06 for C. albicans, 0.5/0.5 for C. parapsilosis, 0.25/0.25 for C. glabrata, 0.5/0.5 for C. tropicalis, 1/1 for C. krusei, 4/2 for C. orthopsilosis, and 0.5/0.5 for C. auris. Ibrexafungerp showed activity against fluconazole- and echinocandin-resistant isolates. If adopting wild-type upper limits, a non-wild-type phenotype for ibrexafungerp was only observed for 16/434 (3.7%) isolates: 11 (4.6%) C. parapsilosis, 4 (5%) C. glabrata, and 1 (2.5%) C. tropicalis. Conclusion: Ibrexafungerp showed a potent in vitro activity against Candida.


Subject(s)
Antifungal Agents , Candidiasis, Invasive , Antifungal Agents/pharmacology , Candida , Candida albicans , Candida glabrata , Candida parapsilosis , Candida tropicalis , Candidiasis, Invasive/microbiology , Fluconazole/pharmacology , Glycosides , Micafungin , Triterpenes
3.
Microorganisms ; 9(2)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672193

ABSTRACT

Mucolares are an ancient group of fungi encompassing the causal agents for the lethal infection mucormycosis. The high lethality rates, the emerging character of this disease, and the broad antifungal resistance of its causal agents are mucormycosis features that are alarming clinicians and researchers. Thus, the research field around mucormycosis is currently focused on finding specific weaknesses and targets in Mucorales for developing new treatments. In this work, we tested the role of the white-collar genes family in the virulence potential of Mucor lusitanicus. Study of the three genes of this family, mcwc-1a, mcwc-1b, and mcwc-1c, resulted in a marked functional specialization, as only mcwc-1a was essential to maintain the virulence potential of M. lusitanicus. The traditional role of wc-1 genes regulating light-dependent responses is a thoroughly studied field, whereas their role in virulence remains uncharacterized. In this work, we investigated the mechanism involving mcwc-1a in virulence from an integrated transcriptomic and functional approach during the host-pathogen interaction. Our results revealed mcwc-1a as a master regulator controlling an extensive gene network. Further dissection of this gene network clustering its components by type of regulation and functional criteria disclosed a multifunctional mechanism depending on diverse pathways. In the absence of phagocytic cells, mcwc-1a controlled pathways related to cell motility and the cytoskeleton that could be associated with the essential tropism during tissue invasion. After phagocytosis, several oxidative response pathways dependent on mcwc-1a were activated during the germination of M. lusitanicus spores inside phagocytic cells, which is the first stage of the infection. The third relevant group of genes involved in virulence and regulated by mcwc-1a belonged to the "unknown function," indicating that new and hidden pathways are involved in virulence. The unknown function category is especially pertinent in the study of mucormycosis, as it is highly enriched in specific fungal genes that represent the most promising targets for developing new antifungal compounds. These results unveil a complex multifunctional mechanism used by wc-1 genes to regulate the pathogenic potential in Mucorales that could also apply to other fungal pathogens.

4.
Front Cell Infect Microbiol ; 10: 587909, 2020.
Article in English | MEDLINE | ID: mdl-33194829

ABSTRACT

Scedosporium species rank second among the filamentous fungi capable to colonize chronically the respiratory tract of patients with cystic fibrosis (CF). Nevertheless, there is little information on the mechanisms underpinning their virulence. Iron acquisition is critical for the growth and pathogenesis of many bacterial and fungal genera that chronically inhabit the CF lungs. In a previous study, we showed the presence in the genome of Scedosporium apiospermum of several genes relevant for iron uptake, notably SAPIO_CDS2806, an ortholog of sidD, which drives the synthesis of the extracellular hydroxamate-type siderophore fusarinine C (FsC) and its derivative triacetylfusarinine C (TAFC) in Aspergillus fumigatus. Here, we demonstrate that Scedosporium apiospermum sidD gene is required for production of an excreted siderophore, namely, Nα-methylcoprogen B, which also belongs to the hydroxamate family. Blockage of the synthesis of Nα-methylcoprogen B by disruption of the sidD gene resulted in the lack of fungal growth under iron limiting conditions. Still, growth of ΔsidD mutants could be restored by supplementation of the culture medium with a culture filtrate from the parent strain, but not from the mutants. Furthermore, the use of xenosiderophores as the sole source of iron revealed that S. apiospermum can acquire the iron using the hydroxamate siderophores ferrichrome or ferrioxamine, i.e., independently of Nα-methylcoprogen B production. Conversely, Nα-methylcoprogen B is mandatory for iron acquisition from pyoverdine, a mixed catecholate-hydroxamate siderophore. Finally, the deletion of sidD resulted in the loss of virulence in a murine model of scedosporiosis. Our findings demonstrate that S. apiospermum sidD gene drives the synthesis of a unique extracellular, hydroxamate-type iron chelator, which is essential for fungal growth and virulence. This compound scavenges iron from pyoverdine, which might explain why S. apiospermum and Pseudomonas aeruginosa are rarely found simultaneously in the CF lungs.


Subject(s)
Invasive Fungal Infections , Scedosporium , Animals , Humans , Mice , Scedosporium/genetics , Siderophores , Virulence
5.
Rev Iberoam Micol ; 37(3-4): 81-86, 2020.
Article in English | MEDLINE | ID: mdl-33168341

ABSTRACT

BACKGROUND: Mucor circinelloides is an opportunistic fungus capable of causing mucormycosis, a highly aggressive infection of quick spreading. Besides, it also has a high mortality rate due to late diagnosis and difficult treatment. AIMS: In this study we have identified the most immunoreactive proteins of the secretome and the total protein extract of M. circinelloides using sera from immunocompromised infected mice. METHODS: The proteins of the secretome and the total extract were analyzed by two-dimensional electrophoresis and the most immunoreactive antigens were detected by Western Blot, facing the sera of immunocompromised infected mice to the proteins obtained in both extracts of M. circinelloides. RESULTS: Seven antigens were detected in the secretome extract, and two in the total extract, all of them corresponding only to three proteins. The enzyme enolase was detected in both extracts, while triosephosphate isomerase was detected in the secretome, and heat shock protein HSS1 in the total extract. CONCLUSIONS: In this work the most immunoreactive antigens of the secretome and the total extract of M. circinelloides were identified. The identified proteins are well known fungal antigens and, therefore, these findings can be useful for future research into alternatives for the diagnosis and treatment of mucormycosis.


Subject(s)
Mucor , Mucormycosis , Animals , Mice , Mucormycosis/diagnosis , Oxidation-Reduction
6.
Article in English | MEDLINE | ID: mdl-33077654

ABSTRACT

Mutations in ERG11 were detected by gene sequencing and amino acid alignment in 18 Candida tropicalis strains with different degrees of sensitivity to voriconazole (VRC). ERG11 expression, sterol content, and membrane permeability were also evaluated. We report three missense mutations in ERG11 that resulted in resistance to VRC. The transcriptional levels of ERG11 as well as the ergosterol content and membrane permeability demonstrated no correlation to only a slight correlation with the obtained MIC values, but the data did suggest a tendency toward such a correlation.


Subject(s)
Candida tropicalis , Candidiasis , Antifungal Agents/pharmacology , Azoles , Candida albicans , Candida tropicalis/genetics , Drug Resistance, Fungal/genetics , Ergosterol , Fluconazole , Fungal Proteins/genetics , Humans , Microbial Sensitivity Tests , Permeability , Voriconazole/pharmacology
7.
Rev. iberoam. micol ; 37(3/4): 81-86, jul.-oct. 2020. ilus, tab
Article in English | IBECS | ID: ibc-200357

ABSTRACT

BACKGROUND: Mucor circinelloides is an opportunistic fungus capable of causing mucormycosis, a highly aggressive infection of quick spreading. Besides, it also has a high mortality rate due to late diagnosis and difficult treatment. AIMS: In this study we have identified the most immunoreactive proteins of the secretome and the total protein extract of M. circinelloides using sera from immunocompromised infected mice. METHODS: The proteins of the secretome and the total extract were analyzed by two-dimensional electrophoresis and the most immunoreactive antigens were detected by Western Blot, facing the sera of immunocompromised infected mice to the proteins obtained in both extracts of M. circinelloides. RESULTS: Seven antigens were detected in the secretome extract, and two in the total extract, all of them corresponding only to three proteins. The enzyme enolase was detected in both extracts, while triosephosphate isomerase was detected in the secretome, and heat shock protein HSS1 in the total extract. CONCLUSIONS: In this work the most immunoreactive antigens of the secretome and the total extract of M. circinelloides were identified. The identified proteins are well known fungal antigens and, therefore, these findings can be useful for future research into alternatives for the diagnosis and treatment of mucormycosis


ANTECEDENTES: Mucor circinelloides es un hongo oportunista causante de la mucormicosis, una infección altamente agresiva y de rápida expansión. Además, también presenta una alta mortalidad debido al diagnóstico tardío y el difícil tratamiento. OBJETIVOS: En este estudio se han identificado las proteínas más inmunorreactivas del secretoma y del extracto total de proteínas de M. circinelloides mediante el uso de sueros obtenidos de ratones inmunodeprimidos infectados. MÉTODOS: Las proteínas del secretoma y del extracto total se analizaron mediante electroforesis bidimensional y se detectaron los antígenos más inmunorreactivos mediante Western Blot, enfrentando el suero de los ratones inmunodeprimidos infectados a las proteínas obtenidas en ambos extractos de M. circinelloides. RESULTADOS: Se identificaron 7 antígenos en el secretoma y 2 en el extracto total, todos ellos correspondientes a 3 proteínas. La enolasa se detectó en ambos extractos, mientras que la triosafosfato isomerasa se detectó en el secretoma, y la proteína de choque térmico HSS1 en el extracto total. CONCLUSIONES: En este trabajo se identificaron los antígenos más inmunorreactivos del secretoma y del extracto total de M. circinelloides. Todas las proteínas identificadas son antígenos fúngicos muy conocidos y, por ello, estos resultados pueden ser de gran utilidad en futuras investigaciones relacionadas con la mejora del diagnóstico y el tratamiento de la mucormicosis


Subject(s)
Animals , Mice , Antigens, Fungal/immunology , Immunocompromised Host , Mucormycosis/immunology , Mucor/immunology , Two-Dimensional Difference Gel Electrophoresis , Models, Animal
8.
Virulence ; 11(1): 1108-1121, 2020 12.
Article in English | MEDLINE | ID: mdl-32862758

ABSTRACT

Cu is an essential trace element for cell growth and proliferation. However, excess of Cu accumulation leads to cellular toxicity. Thus, precise and tight regulation of Cu homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is required. Moreover, the maintenance of Cu homeostasis is critical for the survival and virulence of fungal pathogens. Cu homeostasis has been extensively studied in mammals, bacteria, and yeast, but it has not yet been well documented in filamentous fungi. In the present work, we investigated Cu tolerance in the filamentous fungus Fusarium oxysporum by analysing the Cu transporter coding gene crpF, previously studied in Aspergillus fumigatus. The expression studies demonstrated that crpF is upregulated in the presence of Cu and its deletion leads to severe sensitivity to low levels of CuSO4 in F. oxysporum. Targeted deletion of crpF did not significantly alter the resistance of the fungus to macrophage killing, nor its pathogenic behaviour on the tomato plants. However, the targeted deletion mutant ΔcrpF showed increased virulence in a murine model of systemic infection compared to wild-type strain (wt).


Subject(s)
Copper Transport Proteins/genetics , Copper/toxicity , Fungal Proteins/genetics , Fusarium/chemistry , Fusarium/drug effects , Animals , Cell Line , Copper Sulfate/pharmacology , Copper Transport Proteins/metabolism , Fungal Proteins/metabolism , Fusarium/pathogenicity , Gene Deletion , Gene Expression Regulation, Fungal , Homeostasis , Solanum lycopersicum/microbiology , Macrophages/microbiology , Male , Mice , Plant Diseases/microbiology , Virulence
9.
Colloids Surf B Biointerfaces ; 193: 111119, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32464356

ABSTRACT

Voriconazole (VCZ) is currently the first-line treatment for invasive aspergillosis, although the doses are limited by its poor solubility and high hepatic toxicity. The aim of this study was to develop a solid self-dispersing micellar system of VCZ to improve the pharmacokinetic/pharmacodynamic (PK/PD) relationship and reduce hepatotoxicity. In this work, solid micellar systems of VCZ are formulated with different polysorbate 80 ratios using mannitol as a hydrophilic carrier. The novel micellar systems were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution studies. Self-dispersing micellar systems reduced VCZ crystallinity, leading to an improvement in its dissolution rate. The in vitro susceptibility test also revealed that the most common microorganisms in invasive aspergillosis exhibited low minimum inhibitory concentration (MIC) values for micellar systems. Pharmacokinetic studies indicated an improvement in bioavailability for MS-1:3:0.05, and changes in its biodistribution to different organs. MS-1:3:0.05 showed an increased concentration in lungs and a significant decrease in VCZ accumulated in the liver.


Subject(s)
Antifungal Agents/pharmacology , Aspergillosis/drug therapy , Aspergillus/drug effects , Voriconazole/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/toxicity , Drug Compounding , Drug Liberation , Male , Mannitol/chemistry , Microbial Sensitivity Tests , Particle Size , Polysorbates/chemistry , Rats , Rats, Wistar , Surface Properties , Tissue Distribution , Voriconazole/chemistry , Voriconazole/toxicity
10.
Pharmaceutics ; 12(4)2020 Apr 04.
Article in English | MEDLINE | ID: mdl-32260348

ABSTRACT

Fungal and parasitic diseases affect more than a billion people across the globe, one-sixth of the world's population, mostly located in developing countries. The lack of effective and safer treatments combined with a deficient diagnosis lead to serious chronic illness or even death. There is a mismatch between the rate of drug resistance and the development of new medicines. Formulation of antifungal and antiparasitic drugs adapted to different administration routes is challenging, bearing in mind their poor water solubility, which limits their bioavailability and efficacy. Hence, there is an unmet clinical need to develop vaccines and novel formulations and drug delivery strategies that can improve the bioavailability and therapeutic effect by enhancing their dissolution, increasing their chemical potency, stabilising the drug and targeting high concentration of drug to the infection sites. This Editorial regards the ten research contributions presented in the Special Issue "Antifungal and Antiparasitic Drug Delivery".

11.
Int J Antimicrob Agents ; 55(1): 105807, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31542320

ABSTRACT

Aspergillus fumigatus is the main causal agent of invasive aspergillosis (IA), however other species of the genus can also cause IA, such as Aspergillus flavus, Aspergillus terreus, Aspergillus niger and related cryptic species. This infectious disease mainly affects immunosuppressed patients and is linked to elevated mortality rates. As voriconazole is the treatment of choice for this condition, the relevant increase in the number of azole-resistant isolates in recent years has gathered alarming attention, as it also translates into an increase in clinical failures. In this review, we summarise and discuss the azole resistance molecular data described to date in the most clinically prevalent sections of Aspergillus, including mechanisms involving the target proteins Cyp51 and ATP-binding cassette (ABC) or major facilitator superfamily (MFS) efflux pumps. Other resistance mechanisms proposed but not yet fully characterised are also discussed.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/genetics , Aspergillus/genetics , Drug Resistance, Fungal , Fungal Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Aspergillus/drug effects , Aspergillus fumigatus/drug effects , Azoles/pharmacology , Cytochrome P450 Family 51/genetics , Cytochrome P450 Family 51/metabolism , Fungal Proteins/genetics , Humans , Voriconazole/pharmacology
12.
Med Mycol ; 58(1): 30-38, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-30843047

ABSTRACT

Candida glabrata causes difficult to treat invasive candidiasis due to its antifungal resistance, mainly to azoles. The aim of the present work was to study the role of the genes ERG11, CDR1, CDR2, and SNQ2 on the resistance to voriconazole (VRC) in a set of C. glabrata strains with known in vitro and in vivo susceptibility to this drug. Eighteen clinical isolates of C. glabrata were exposed in vitro to VRC, and the expression of the cited genes was quantified by real time quantitative polymerase chain reaction (q-PCR). In addition, the ERG11 gene was amplified and sequenced to detect possible mutations. Ten synonymous mutations were found in 15 strains, two of them being reported for the first time; however, no amino acid changes were detected. ERG11 and CDR1 were the most expressed genes in all the strains tested, while the expression of CDR2 and SNQ2 was modest. Our results show that gene expression does not directly correlate with the VRC MIC. In addition, the expression profiles of ERG11 and efflux pump genes did not change consistently after exposure to VRC. Although individual analysis did not result in a clear correlation between MIC and gene expression, we did observe an increase in ERG11 and CDR1 expression in resistant strains. It is of interest that considering both in vitro and in vivo results, the slight increase in such gene expression correlates with the observed resistance to VRC.


Subject(s)
Antifungal Agents/pharmacology , Candida glabrata/drug effects , Candida glabrata/genetics , Drug Resistance, Multiple, Fungal/genetics , Fungal Proteins/genetics , Membrane Transport Proteins/genetics , Voriconazole/pharmacology , Candidiasis/microbiology , Gene Expression , Microbial Sensitivity Tests , Mutation
13.
Pharmaceutics ; 11(9)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484389

ABSTRACT

Invasive pulmonary aspergillosis represents one of the most serious fungal infections among immunocompromised patients. In this study, we aimed to analyze the in vivo efficacy of prophylactic oral amphotericin B (AMB) encapsulated in modified chitosan-nanoparticles (Nanomerics' Molecular Envelope Technology (MET)) supplemented with a standardized extract of cultured Lentinula edodes mycelia (AHCC®) in a murine model of pulmonary aspergillosis. We determined fungal burden and survival of mice and additionally, we carried out a cytokine analysis in an attempt to understand the immunomodulation of the extract. Our results evidenced equivalent efficacy between orally administered AMB-MET and the intravenous liposomal AMB marketed formulation. Addition of the AHCC® supplement significantly improved efficacy in terms of burden reduction and survival increase of both oral and intravenous AMB therapies compared to the untreated control group. Moreover, a protective effect of the extract was observed in terms of weight loss. Regarding the cytokine profiles, the Th1 immune response was stimulated in treated animals when compared to the control group. This response was marked by an enhancement in the MCP-1, GM-CSF, VEGF, RANTES and IL-17 levels and a decrease in the IL-6, a biomarker related to the severity of the infection.

14.
Front Microbiol ; 10: 1585, 2019.
Article in English | MEDLINE | ID: mdl-31354675

ABSTRACT

The pathogenic yeast Candida glabrata has become a public health issue due to the increasing number of echinocandin resistant clinical strains reported. In this study, acquisition and development of resistance to this antifungal class were studied in serial C. glabrata isolates from five patients admitted in two Spanish hospitals with a resistant profile against echinocandins associated with different mutations in hot-spot 1 of FKS2 gene. For two of these patients susceptible FKS wild-type isolates obtained prior to resistant ones were also investigated. Isolates were genotyped using multilocus sequence typing and microsatellite length polymorphism techniques, which yielded comparable results. Susceptible and resistant isolates from the same patient had the same genotype, being sequence type (ST) 3 the most prevalent among them. Isolates with different FKS mutations but the same ST were present in the same patient. MSH2 gene alterations were also studied to investigate their correlation with antifungal resistance acquisition but no association was found with antifungal resistance nor with specific genotypes. In vitro exposure to increasing concentrations of micafungin to susceptible isolates developed colonies carrying FKS mutations in agar plates containing a minimum concentration of 0.06 mg/L of micafungin after less than 48 h of exposure. We investigated the correlation between development of resistance and genotype in a set of susceptible strains after being in vitro exposed to micafungin and anidulafungin but no correlation was found. Mutant prevention concentration values and spontaneous growth frequencies after selection with both echinocandins were statistically similar, although FKS mutant colonies were more abundant after micafungin exposure (p < 0.001). Mutation S663P and F659 deletion were the most common ones found after selection with both echinocandins.

15.
Metallomics ; 11(7): 1230-1240, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31134239

ABSTRACT

Soil organisms exhibit high tolerance to heavy metals, probably acquired through evolutionary adaptation to contaminated environments. Essentially, metal tolerance in fungi involves several specific and non-specific mechanisms that include metal efflux, metal binding to cell walls, extracellular and intracellular sequestration and complexation with proteins. However, fungi have adopted different strategies to detoxify heavy metals, although species differ in the mechanisms used. In this complex molecular framework, metallothioneins (MTs) are becoming increasingly relevant in metal homeostasis, even though little is known about their role in metal adaptation and virulence in fungal pathogens. With the aim to decipher the function of metallothioneins in the opportunistic fungus Fusarium oxysporum, we have carried out an in silico analysis that revealed the presence of a hypothetical metallothionein (mt1) that has multiple metal responsive elements in its promoter region and conserved cysteine motifs in its coding sequence. Characterization of strain Δmt1 deficient in the mt1 gene revealed higher sensitivity of this mutant to copper, cadmium and zinc compared to the wild type strain (wt). Expression analyses revealed that Zn specifically activates mt1, but the lack of this gene did not lead to a transcriptional up-regulation of genes gapdh and prx, associated with the oxidative stress response. The lack of mt1 did not alter the pathogenic capacity of the fungus, either in tomato plant or in a murine model of systemic infection. Nevertheless, Δmt1 displayed lower resistance to macrophage killing, suggesting a connection between the absence of mt1 and impaired defence capacity against copper and reactive oxygen species.


Subject(s)
Fungal Proteins/metabolism , Fusariosis/microbiology , Fusarium/metabolism , Fusarium/pathogenicity , Metallothionein/metabolism , Metals, Heavy/metabolism , Animals , Cadmium/metabolism , Cell Line , Copper/metabolism , Fusariosis/metabolism , Fusariosis/pathology , Fusarium/genetics , Gene Deletion , Solanum lycopersicum/microbiology , Male , Metallothionein/genetics , Mice , Plant Diseases/microbiology , Virulence , Zinc/metabolism
16.
Article in English | MEDLINE | ID: mdl-31061160

ABSTRACT

Invasive aspergillosis (IA) is a severe condition mainly caused by Aspergillus fumigatus, although other species of the genus, such as section Nigri members, can also be involved. Voriconazole (VRC) is the recommended treatment for IA; however, the prevalence of azole-resistant Aspergillus isolates has alarmingly increased in recent years, and the underlying resistance mechanisms in non-fumigatus species remain unclear. We have determined the in vitro susceptibility of 36 strains from section Nigri to VRC, posaconazole (POS), and itraconazole (ITC), and we have explored the role of Cyp51A and Cyp51B, both targets of azoles, in azole resistance. The three drugs were highly active; POS displayed the best in vitro activity, while ITC and VRC showed MICs above the established epidemiological cutoff values in 9 and 16% of the strains, respectively. Furthermore, expression studies of cyp51A and cyp51B in control condition and after VRC exposure were performed in 14 strains with different VRC susceptibility. We found higher transcription of cyp51A, which was upregulated upon VRC exposure, but no correlation between MICs and cyp51 transcription levels was observed. In addition, cyp51A sequence analyses revealed nonsynonymous mutations present in both, wild-type and non-wild-type strains of A. niger and A. tubingensis Nevertheless, a few mutations were exclusively present in non-wild-type A. tubingensis strains. Altogether, our results suggest that azole resistance in section Nigri is not clearly explained by Cyp51A protein alteration or by cyp51 gene upregulation, which indicates that other mechanisms might be involved.


Subject(s)
Aspergillus/drug effects , Aspergillus/genetics , Azoles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Antifungal Agents/pharmacology , Microbial Sensitivity Tests/methods , Mutation/genetics
17.
Rev. iberoam. micol ; 36(1): 37-40, ene.-mar. 2019. tab, graf
Article in English | IBECS | ID: ibc-185492

ABSTRACT

Background: The incidence of systemic infections by Saccharomyces cerevisiae has increased in recent years, especially among immunocompromised patients. Amphotericin B, voriconazole or echinocandins have been used with favorable outcome against systemic infections by this fungus. However, clinical experience is limited and no in vivo studies have been conducted. Aims: We evaluated the in vitro activity of nine antifungal compounds against S.cerevisiae and the in vivo efficacy of those three antifungals showing the highest in vitro activity by using a murine model of systemic infection. Methods: Minimal inhibitory concentrations (MICs) were determined by the microdilution method against three strains of S. cerevisiae. After intravenous infection with 5 × 107 CFUs, animals received liposomal amphotericin B (5 mg/kg), voriconazole (25 mg/kg) or anidulafungin (5 mg/kg). Treatment efficacy was assessed by determining of CFUs/g in liver, kidney, brain, lung and spleen. Results: 5-Fluorocytosine was the most in vitro active compound followed by amphotericin B, voriconazole and anidulafungin. The in vivo study showed that liposomal amphotericin B was the most effective drug driving highest fungal clearance. Conclusions: All treatments reduced the fungal load in comparison to the control group, being liposomal amphotericin B the most effective drug followed by anidulafungin and finally voriconazole


Antecedentes: La incidencia de infecciones sistémicas causadas por Saccharomyces cerevisiae ha aumentado en los últimos años, especialmente entre pacientes inmunodeprimidos. A pesar de que la anfotericina B, el voriconazol o las equinocandinas han dado buen resultado en infecciones sistémicas por este hongo, no se han establecido recomendaciones terapéuticas sólidas. Objetivos: Se evaluó la actividad in vitro de nueve antifúngicos frente a S. cerevisiae y la eficacia in vivo de los tres fármacos con mayor actividad in vitro mediante un modelo murino de infección sistémica. Métodos: Se determinaron las concentraciones mínimas inhibitorias (CMIs) frente a tres cepas de S. cerevisiae por el método de microdilución. Después de la inoculación intravenosa con 5 × 107UFC, los ratones fueron tratados con anfotericina B liposomal (5 mg/kg), voriconazol (25 mg/kg) o anidulafungina (5 mg/kg). La eficacia de los tratamientos se estableció basándose en la determinación de UFC/g en hígado, riñón, cerebro, pulmón y bazo. Resultados: La 5-fluorocitosina fue el compuesto más activo in vitro, seguido por la anfotericina B liposomal, el voriconazol y la anidulafungina. En el estudio in vivo, la anfotericina B liposomal fue el fármaco más eficaz en términos de reducción de la carga fúngica y esterilización de los órganos estudiados. Conclusiones: Todos los tratamientos redujeron la carga fúngica en comparación con el grupo control, y la anfotericina B liposomal fue el antifúngico más efectivo, seguido de la anidulafungina y el voriconazol


Subject(s)
Humans , Animals , Male , Rats , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Echinocandins/pharmacology , Echinocandins/therapeutic use , Mycoses/drug therapy , Saccharomyces cerevisiae/drug effects , Voriconazole/pharmacology , Voriconazole/therapeutic use , Disease Models, Animal , Microbial Sensitivity Tests
18.
Rev Iberoam Micol ; 36(1): 37-40, 2019.
Article in English | MEDLINE | ID: mdl-30765275

ABSTRACT

BACKGROUND: The incidence of systemic infections by Saccharomyces cerevisiae has increased in recent years, especially among immunocompromised patients. Amphotericin B, voriconazole or echinocandins have been used with favorable outcome against systemic infections by this fungus. However, clinical experience is limited and no in vivo studies have been conducted. AIMS: We evaluated the in vitro activity of nine antifungal compounds against S.cerevisiae and the in vivo efficacy of those three antifungals showing the highest in vitro activity by using a murine model of systemic infection. METHODS: Minimal inhibitory concentrations (MICs) were determined by the microdilution method against three strains of S. cerevisiae. After intravenous infection with 5×107 CFUs, animals received liposomal amphotericin B (5mg/kg), voriconazole (25mg/kg) or anidulafungin (5mg/kg). Treatment efficacy was assessed by determining of CFUs/g in liver, kidney, brain, lung and spleen. RESULTS: 5-Fluorocytosine was the most in vitro active compound followed by amphotericin B, voriconazole and anidulafungin. The in vivo study showed that liposomal amphotericin B was the most effective drug driving highest fungal clearance. CONCLUSIONS: All treatments reduced the fungal load in comparison to the control group, being liposomal amphotericin B the most effective drug followed by anidulafungin and finally voriconazole.


Subject(s)
Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Echinocandins/pharmacology , Echinocandins/therapeutic use , Mycoses/drug therapy , Saccharomyces cerevisiae/drug effects , Voriconazole/pharmacology , Voriconazole/therapeutic use , Animals , Disease Models, Animal , Humans , Male , Mice , Microbial Sensitivity Tests
19.
Diagn Microbiol Infect Dis ; 92(2): 124-126, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30201117

ABSTRACT

The efficacy of liposomal amphotericin B and voriconazole was evaluated against the systemic infection by Fusarium oxysporum species complex or Fusarium keratoplasticum. Although MIC values were within the epidemiological cutoff values (ECVs) recently stablished for Fusarium spp., no efficacy was obtained, indicating that ECVs for Fusarium are not relevant for in vivo efficacy.


Subject(s)
Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Fusariosis/drug therapy , Fusarium/drug effects , Voriconazole/pharmacology , Animals , Disease Models, Animal , Mice
20.
Article in English | MEDLINE | ID: mdl-29760126

ABSTRACT

An experimental micellar formulation of 1:1.5 amphotericin B-sodium deoxycholate (AMB:DCH 1:1.5) was obtained and characterized to determine its aggregation state and particle size. The biodistribution, nephrotoxicity, and efficacy against pulmonary aspergillosis in a murine model were studied and compared to the liposomal commercial formulation of amphotericin B after intravenous administration. The administration of 5 mg/kg AMB:DCH 1:1.5 presented 2.8-fold-higher lung concentrations (18.125 ± 3.985 µg/g after 6 daily doses) and lower kidney exposure (0.391 ± 0.167 µg/g) than liposomal commercial amphotericin B (6.567 ± 1.536 and 5.374 ± 1.157 µg/g in lungs and kidneys, respectively). The different biodistribution of AMB:DCH micelle systems compared to liposomal commercial amphotericin B was attributed to their different morphologies and particle sizes. The efficacy study has shown that both drugs administered at 5 mg/kg produced similar survival percentages and reductions of fungal burden. A slightly lower nephrotoxicity, associated with amphotericin B, was observed with AMB:DCH 1:1.5 than the one induced by the liposomal commercial formulation. However, AMB:DCH 1:1.5 reached higher AMB concentrations in lungs, which could represent a therapeutic advantage over liposomal commercial amphotericin B-based treatment of pulmonary aspergillosis. These results are encouraging to explore the usefulness of AMB:DCH 1:1.5 against this disease.


Subject(s)
Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Deoxycholic Acid/pharmacology , Deoxycholic Acid/therapeutic use , Kidney/drug effects , Kidney/metabolism , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/metabolism , Animals , Drug Combinations , Lung/drug effects , Lung/metabolism , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...